Article “Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning” was accepted to IEEE Access

Articles
Mohammed's article "Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning" was accepted for publication in to IEEE Access open access journal. Congratulations! Abstract: This article develops a special decomposition methodology for the traditional optimal power flow which facilitates optimal integration of stochastic distributed energy resources in power distribution systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of the conventional linear programming approach while avoiding the challenges associated with the stochastic nature of the energy resources and loads. It does so using machine learning algorithms employed for two crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the electric power transaction optimality. Second, the optimal distributed…
Read More